Case c.

Where $m_1 = m_2$. Thus

$\displaystyle y_1 = e^{m_1x}$

So we need another solution. We will prove this in a later section.

$\displaystyle y_2(x)$ $\displaystyle = xe^{m_1x}$    
$\displaystyle y(x)$ $\displaystyle = Ay_1(x) + By_2(x)$   general solution    
$\displaystyle y(x)$ $\displaystyle = (A+Bx)e^{m_1x}$    

Example:

$\displaystyle \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y$ $\displaystyle = 0$    
$\displaystyle m^2 + 2m + 1$ $\displaystyle = (m+1)^2 = 0$   auxillary equation    
$\displaystyle m$ $\displaystyle = -1$    
$\displaystyle y_1(x)$ $\displaystyle = e^{-x}$    
$\displaystyle y_2(x)$ $\displaystyle = xe^{-x}$    
$\displaystyle y(x)$ $\displaystyle = (A+Bx)e^{-x}$    
   general solution    

We can check that $y_2$ is a solution.

$\displaystyle \frac{dy_2}{dx}$ $\displaystyle = e^{-x}-xe^{-x} = (1-x)e^{-x}$    
$\displaystyle \frac{d^2y_2}{dx^2}$ $\displaystyle = -e^{-x}-e^{-x}+xe^{-x} = (x-2)e^{-x}$    
$\displaystyle \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y$ $\displaystyle = 0$    
   original ODE    
$\displaystyle [(x-2) + 2(1-x) + x]e^{-x}$ $\displaystyle = 0$    
0 $\displaystyle = 0$