Separable ODEs

A separable ODE is one in which the functions of both x and y can be separated.

$\displaystyle \frac{dy}{dx}$ $\displaystyle = \frac{g(x)}{f(y)}$    
$\displaystyle \frac{dy}{dx} f(y)$ $\displaystyle = g(x)$    

This can then be rearranged and integrated so that

$\displaystyle \int f(y) dy = \int g(x) dx\\ $

Example

$\displaystyle \frac{dy}{dx}$ $\displaystyle = e^{x+y} = e^xe^y$    
$\displaystyle \int e^{-y} dy$ $\displaystyle = \int e^x dx$    
$\displaystyle -e^{-y}$ $\displaystyle = e^x + c$    
$\displaystyle e^x + e^{-y}$ $\displaystyle = c$    

$c$ is just a constant so its sign does not matter at this point.
We can then solve explicitly for $y$.

$\displaystyle e^{-y}$ $\displaystyle = c - e^x$    
$\displaystyle y$ $\displaystyle = -\ln(c-e^x)$