Boundary and Initial Conditions

The general solution to a 1st Order DE always contains one undefined constant of integration, like $c$. A boundary (for x) or initial (for t) condition is given, typcially y(x) at a given x value.

Example: T goes from 90$^\circ$c to 70$^\circ$c in 10 minutes(t), the room temperature is 20$^\circ$c(T$_0$), find T after 20 minutes.

$\displaystyle \frac{dT}{dt}$ $\displaystyle = -\alpha(T-T_0)$    
$\displaystyle \int \frac{dT}{T-T_0}$ $\displaystyle = -\alpha \int dt$    
$\displaystyle \ln(T-T_0)$ $\displaystyle = -\alpha t + c$    
$\displaystyle T-T_0$ $\displaystyle = e^{-\alpha t + c} = Ae^{-\alpha t}$    
$\displaystyle A$ $\displaystyle = e^c$    

We can now use our initial conditions to solve for T(20)

$\displaystyle \textrm{When } t$ $\displaystyle = 0$    
$\displaystyle T-T_0$ $\displaystyle = 90 - 20 = 70$    
$\displaystyle A$ $\displaystyle = 70$    
$\displaystyle \textrm{When } t$ $\displaystyle = 10$    
$\displaystyle T$ $\displaystyle = T_0 + Ae^{-\alpha t}$    
$\displaystyle 70$ $\displaystyle = 20 + 70e^{-10\alpha }$    
$\displaystyle e^{-10\alpha}$ $\displaystyle = \frac{70-20}{70} = \frac{5}{7}$    
$\displaystyle \textrm{When } t$ $\displaystyle = 20$    
$\displaystyle T$ $\displaystyle = 20 + 70e^{-20\alpha}$    
$\displaystyle (e^{-10\alpha})^2$ $\displaystyle = e^{-20\alpha}$    
$\displaystyle T$ $\displaystyle = 20 + 70\left(\frac{5}{7}\right)^2 = 55.7^\circ c$