Homoegeneous ODEs

Replace $y$ with $yt$ and $x$ with $xt$, if all the $t$s cancel then the ODE is homogeneous.

$\displaystyle \frac{dy}{dx}$ $\displaystyle = f\left(\frac{y}{x}\right)$    
$\displaystyle \textrm{let }v$ $\displaystyle = \frac{y}{x} \textrm{ so } y = vx$    
$\displaystyle \frac{dy}{dx}$ $\displaystyle = \frac{d}{dx}vx$    

$v$ is a function of $x$ so we must use the product rule.

$\displaystyle \frac{dy}{dx}$ $\displaystyle = v + x\frac{dv}{dx} = f(v)$    
$\displaystyle \frac{dv}{dx}$ $\displaystyle = \frac{f(v) - v}{x}$    

This is now a separable function, and can be solved as before.

Example: $y(1) = 1$

$\displaystyle \frac{dy}{dx}$ $\displaystyle = \frac{y}{x^2}(x-y) = \frac{y}{x} - \left(\frac{y}{x}\right)^2$    
$\displaystyle \textrm{let }v$ $\displaystyle = \frac{y}{x} \textrm{ so } y = vx$    
$\displaystyle \frac{dy}{dx}$ $\displaystyle = v + x\frac{dv}{dx} = v - v^2 \quad\textrm{ separable}$    
$\displaystyle \int \frac{-dv}{v^2}$ $\displaystyle = \int \frac{dx}{x}$    
$\displaystyle \frac{1}{v}$ $\displaystyle = \ln x + c = \frac{x}{y}$    
$\displaystyle y$ $\displaystyle = \frac{x}{\ln x + c}$    
$\displaystyle y(1)$ $\displaystyle = 1$    
$\displaystyle 1$ $\displaystyle = \frac{1}{\ln(1) + c}$    
$\displaystyle c$ $\displaystyle = 1$